236 research outputs found

    Non-binding of Flavor-Singlet Hadrons to Nuclei

    Get PDF
    Strongly attractive color forces in the flavor singlet channel may lead to a stable H dibaryon. Here we show that an H or other compact, flavor singlet hadron is unlikely to bind to nuclei, so that bounds on exotic isotopes do not exclude their stability. Remarkably, a stable H appears to evade other experimental constraints as well, when account is taken of its expected compact spatial wavefunction.Comment: 10 pages, 2 figure

    Bremsstrahlung gamma rays from light Dark Matter

    Full text link
    We discuss the often-neglected role of bremsstrahlung processes on the interstellar gas in computing indirect signatures of Dark Matter (DM) annihilation in the Galaxy, particularly for light DM candidates in the phenomenologically interesting O(10) GeV mass range. Especially from directions close to the Galactic Plane, the expected gamma-ray spectrum is altered via two effects: directly, by the photons emitted in the bremsstrahlung process on the interstellar gas by energetic electrons which are among the DM annihilation byproducts; indirectly, by the modification of the same electron spectrum, due to the additional energy loss process in the diffusion-loss equation (e.g. the resulting inverse Compton emission is altered). We quantify the importance of the bremsstrahlung emission in the GeV energy range, showing that it is the dominant component of the gamma-ray spectrum for some cases. We also find that, in regions in which bremsstrahlung dominates energy losses, the related gamma-ray emission is only moderately sensitive to possible large variations in the gas density. Still, we stress that, for computing precise spectra in the (sub-)GeV range, it is important to obtain a reliable description of the inner Galaxy gas distribution as well as to compute self-consistently the gamma emission and the solution to the diffusion-loss equation. For example, these are crucial issues to quantify and interpret meaningfully gamma-ray map `residuals' in terms of (light) DM annihilations.Comment: 17 pages, 5 figures, 1 table; references added, changed to match the published versio

    A Window in the Dark Matter Exclusion Limits

    Full text link
    We consider the cross section limits for light dark matter candidates (m=0.4m=0.4 to 10 GeV). We calculate the interaction of dark matter in the crust above underground dark matter detectors and find that in the intermediate cross section range, the energy loss of dark matter is sufficient to fall below the energy threshold of current underground experiments. This implies the existence of a window in the dark matter exclusion limits in the micro-barn range.Comment: 10 pages, 8 figure

    Galactic Center gamma-ray "excess" from an active past of the Galactic Centre?

    Get PDF
    Several groups have recently claimed evidence for an unaccounted gamma-ray excess over {the} diffuse backgrounds at few GeV in {the} Fermi-LAT data in a region around the Galactic Center, consistent with a dark matter annihilation origin. We demonstrate that the main spectral and angular features of this excess can be reproduced if they are mostly due to inverse Compton emission from high-energy electrons injected in a burst event of ~10^52 - 10^53erg roughly O(10^6) years ago. We consider this example as a proof of principle that time-dependent phenomena need to be understood and accounted for - together with detailed diffuse foregrounds and unaccounted "steady state" astrophysical sources - before any robust inference can be made about dark matter signals at the Galactic Center. In addition, we point out that the timescale suggested by our study, which controls both the energy cutoff and the angular extension of the signal, intriguingly matches (together with the energy budget) what is indirectly inferred by other evidences suggesting a very active Galactic Center in the past, for instance related to intense star formation and accretion phenomena.Comment: 6 pages, 4 figures. Minor scale correction plus a typo in a figure label. Conclusions unchange

    Consequences of DM/antiDM Oscillations for Asymmetric WIMP Dark Matter

    Full text link
    Assuming the existence of a primordial asymmetry in the dark sector, a scenario usually dubbed Asymmetric Dark Matter (aDM), we study the effect of oscillations between dark matter and its antiparticle on the re-equilibration of the initial asymmetry before freeze-out, which enable efficient annihilations to recouple. We calculate the evolution of the DM relic abundance and show how oscillations re-open the parameter space of aDM models, in particular in the direction of allowing large (WIMP-scale) DM masses. A typical wimp with a mass at the EW scale (\sim 100 GeV - 1 TeV) presenting a primordial asymmetry of the same order as the baryon asymmetry naturally gets the correct relic abundance if the DM-number-violating Delta(DM) = 2 mass term is in the \sim meV range. The re-establishment of annihilations implies that constraints from the accumulation of aDM in astrophysical bodies are evaded. On the other hand, the ordinary bounds from BBN, CMB and indirect detection signals on annihilating DM have to be considered.Comment: 27 pages, 6+1 figures; v2: version submitted to JCAP for publication, one new figure and one new table added, summary plots slightly revised, a few clarifications added, main point emphasized, results unchange
    • …
    corecore